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ABSTRACT Falls represent a significant public health concern, particularly concerning vulnerable popula-
tions such as older adults. Accurate detection and classification of falls are critical for timely interventions
that can prevent injuries and enhance the quality of life of these individuals. This work proposes a class
ensemble approach based on convolutional neural networks and long short-term memory networks for
three-class classifications of falling processes (non-fall, pre-fall, and fall) using accelerometer and gyroscope
data. The research is conducted on the SisFall and UMAFall datasets, the publicly available dataset of
annotated video recordings of falls and non-falls. This approach leverages convolutional neural networks for
robust feature extraction from the accelerometer and gyroscope data. In addition, long short-term memory
networks model the falling process’s temporal dynamics. The proposed approach has demonstrated state-
of-the-art performance in detecting falls, with accuracy rates of 96.45% and 96.12% and precision scores of
98.12% and 97.45% in identifying pre-fall and fall states, respectively.

INDEX TERMS Convolutional neural network, deep neural network, ensemble method, fall detection, long
short-term memory networks.

I. INTRODUCTION
Falls are a significant health crisis for older adults as they
can cause severe injuries, hospitalization, disability, or even
death. As per the World Health Organization, falls are
the second primary causality of unexpected or unwilling
injury-related fatalities globally, with adults aged 65 years
and above standing out as the most vulnerable segment of
the population [1]. Implementing systems for fall detection
can play an instrumental role in mitigating the occurrence
of falls, thereby fostering the welfare and autonomy of older
adults [2], [3].

Fall detection systems (FDS) have been developed to
address this issue, with the two primary categories being
context-aware (CAS) and non-context-aware systems (non-
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CAS) [4], [5], [6]. CAS systems employ sensors in the
surroundings, such as cameras, pressure sensors, or micro-
phones. Still, their installation is limited and unsuitable for
sparsely populated areas or people frequently leaving the
house. Wearable FDS, a non-CAS FDS, uses low-power
sensors like accelerometers, gyroscopes, and magnetometers,
making them ideal for hospitals and other scenarios where
continuous monitoring is needed.

Although extensive research has been undertaken to devise
wearable devices and context-aware algorithms for post-fall
detection, researchers have now begun focusing on develop-
ing pre-fall detection systems that rely on fall risk evaluation
and intervention [7]. Usually, Post-fall detection involves
detecting a fall event after it has already occurred. This
approach has some limitations, including the possibility of
delayed intervention and the potential for false negatives.
In other words, if the post-fall detection system fails to
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detect a fall event, the person may not receive timely medical
attention or assistance, which could lead to further injuries
or complications. Hence, Pre-impact fall prediction, which
involves predicting falls before they occur, has emerged as a
promising approach to overcome the constraints of post-fall
detection and facilitate long-term fall risk estimation. Predict-
ing falls before impact presents a formidable challenge due
to the brief falling interval and the diverse range of fall types.
Pre-impact fall prediction analyzes various risk factors, such
as gait abnormalities, balance impairment, and environmental
hazards, to assess a person’s fall risk. This information can
be used to develop personalized fall detection strategies and
interventions to reduce the risk of falls.

In the wearable FDS, two distinct approaches are used
to forecast pre-fall and post-fall states: threshold-based
and machine learning-based algorithms [8]. Threshold-based
strategies exhibit lower efficacy levels as they are susceptible
to the types of falls involved. At the same time, machine
learning-based techniques demand a significant number of
samples per instance for accurate fall prediction [9]. Recent
advancements in sensor technology, machine learning, and
artificial intelligence have enabled the evolution of various
advanced FDS [10], [11]. Among these, deep learning-based
systems have shown promising results in detecting pre-fall,
fall, and non-fall events [3], [6]. Convolutional neural net-
works (CNN) and long short-term memory (LSTM) models
have been vastly used in fall detection systems to capture
spatial and temporal features from sensor data [12], [13], [14].

However, the performance of Deep Learning (DL) models
affects by diverse characteristics, such as sensor placement,
data quality, and class imbalance [15]. Ensemble models have
been suggested to address these challenges to enhance the
robustness and accuracy of fall detection approaches [16].
Ensemble models combine multiple base models to leverage
their strengths and minimize their weaknesses, resulting in a
more accurate and stable prediction [17].

Consequently, the principal aim of this investigation is to
devise a novel deep learning architecture founded on class
ensembling, utilizing accelerometer and gyroscope data to
accurately identify fall events in real-time, thereby providing
a preemptive safety mechanism to minimize the occurrence
of severe injuries before impact and issuing a remote notifi-
cation to facilitate prompt medical intervention. The efficacy
of the proposed architecture is assessed on the SisFall [18]
and UMAFall [19] datasets and compared against state-of-
the-art fall detection algorithms to evaluate its performance.
By developing an effective fall detection system, we can
proactively identify vulnerable populations with high fall
risks, thereby implementing appropriate measures to dimin-
ish the likelihood of future falls. The major contributions are
as follows:
• Developing a class ensemble-based deep learning archi-
tecture integrated with CNN and LSTM.

• Evaluating the presented architecture on the SisFall and
UMAFall dataset using accelerometer and gyroscope
data.

• Demonstrating the effectiveness of the proposed archi-
tecture over state-of-the-art fall detection systems.

The remainder of this article is structured as follows.
Section II presents a comprehensive review of related
research in the FDS field. Section III provides a detailed
exposition of the proposed class-based ensemble FDS,
encompassing the datasets, data preprocessing, and model
architecture. The experimental outcomes are presented and
examined in Section IV, including experimental setup and
evaluation metrics. Additionally, Section V delineates the
contributions and limitations of the proposed system while
suggesting potential avenues for future research. Finally,
Section VI ends this article.

II. RELATED WORK
Over the past few years, a burgeoning interest has been
in adopting machine learning techniques, particularly deep
learning, for fall detection. Various studies have investigated
the feasibility of applying these techniques in real-world
scenarios, including the use of wearable devices and associ-
ated algorithms to collect and analyze gait data. Numerous
fall detection solutions have been proposed, broadly clas-
sified into three categories: wearable, ambient, and vision-
based [28].

A. CATEGORIES OF FDS
Ambient fall detection refers to using sensors and devices
installed in the environment to detect falls [29]. These devices
can be placed in strategic locations such as walls, ceilings,
and floors, and they can detect changes in movement pat-
terns or the absence of movement to determine if a fall has
occurred. There are several types of ambient fall detection
systems, including those that use infrared sensors, pressure
sensors, and cameras. Infrared sensors can detect temperature
changes, indicating a person’s presence or absence in a par-
ticular area. Pressure sensors can detect weight distribution
changes, indicating a person’s fall. Cameras can be used to
track a person’s movements and detect falls based on changes
in their body position.

One of the advantages of ambient fall detection systems is
that they do not require the user to wear any special equip-
ment, which can be helpful for people who are resistant to
wearing wearable devices. Additionally, ambient systems can
be more effective at detecting falls in certain situations, such
as when the person is unconscious or unable to press a panic
button. However, ambient fall detection systems also have
some limitations. For example, theymay be less accurate than
wearable systems in detecting falls, as they can be affected
by other environmental movements, such as the movement of
pets or objects. Additionally, they may not be able to detect
falls in all situations, such as when a person falls out of view
of the sensors or when the fall is not severe enough to trigger
the sensors.

Furthermore, Vision-based fall detection methods utilize
cameras and computer vision techniques to monitor and
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TABLE 1. Comparative performance and limitations of existing fall detection methods.

detect falls [30]. These methods typically involve analyzing
video feeds to detect changes in posture or motion patterns
that indicate a fall event. One approach is to use 3D skele-
tal modeling to track the movement of a person’s joints in
real-time and detect anomalies in the motion pattern [31].
This method requires depth sensors such as Microsoft Kinect
or Intel RealSense cameras to capture depth information,
which is then processed using machine learning algorithms.
Another vision-based approach is to use computer vision
techniques such as object detection, tracking, and motion
analysis to identify and track human figures in a video
stream [32], [33]. Changes in the figure’s position or posture
can then be analyzed to detect falls.

Vision-based fall detection has the advantage of being
non-invasive and does not require the use of any wearable
devices. However, it can be affected by factors such as
lighting conditions, occlusions, and the presence of multiple
people in the frame. Additionally, privacy concerns may arise

as cameras are typically required in private areas such as
bedrooms and bathrooms.

In addition, Wearable fall detection systems are designed
to be worn by the user and provide continuous monitoring of
their movements to detect falls [34]. These systems typically
have sensors measuring acceleration, orientation, and other
gait-related parameters. Algorithms are then used to analyze
this data and detect when a fall has occurred. Several studies
have investigated the effectiveness of wearable fall detection
systems, with some achieving high accuracy rates in detecting
falls [35], [36], [37], [38]. However, the accuracy of these
systems can be affected by factors such as the placement
of the sensors on the body and the type of activity the user
performs.

Recent studies have shown that wearable systems are more
cost-effective and perform better than other fall detection
systems, such as ambient and vision-based systems [28].
Wearables have also been found to offer better privacy and
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user acceptance compared to other types of systems [39],
[40]. Therefore, wearable systems appear to be more con-
venient among the three types of fall detection systems due
to their cost-effectiveness, better performance, and privacy
concerns. Hence, this paper focuses on developing a wearable
fall detection system.

B. RECENT DEVELOPMENTS
Zerrouki et al. [41] reviewed state-of-the-art fall detection
technologies using machine learning methodologies, both
classical and deep learning. The authors discuss the sensors,
cameras, pre-treatments, attributes, and algorithms used in
this field. The discussion highlights the limitations of fall
detection, such as the lack of real data, the heterogeneity
in falls, and the dependency on collected data. The authors
suggest modeling like-fall activities as a separate class to
reduce false detections. The paper also points out the imbal-
anced data and issues with performance evaluation criteria.
The review aims to improve the quality of fall detection and
reduce its impacts.

In a recent publication, Sheikh et al. [21] proposed a
lightweight and inexpensive inertial sensing method for
identifying falls among individuals using wheelchairs. The
approach utilizes an unsupervised One-Class Support Vector
Machine (SVM) and a hybrid scheme to achieve fall detec-
tion. The method employs a novel hybrid multi-sensor fusion
strategy to correct sensor integral errors and is tested on a
heterogeneous dataset, including unassisted transfers from
wheelchairs. The proposed method achieves a fall detection
accuracy of up to 96%, which surpasses the performance
of other one-class learning approaches and threshold-based
methods previously reported in the literature.

Maray et al. [20] conducted a study on a smartwatch-based
fall detection system aimed at elderly individuals, which they
evaluated on nine participants. The system was found to have
two primary limitations: its incapability to gather a significant
quantity of personalized training data and model drift when
utilized on different devices. To overcome these challenges,
the authors assembled three datasets from different devices.
They applied transfer learning to address the problem of
small dataset training and enable the model to generalize
across heterogeneous devices. Their findings showed that
transfer learning considerably enhanced the fall detection
performance, as evidenced by superior F1_scores and AUC
(Area Under the Curve) and lower false positive rates com-
pared to the non-transfer learning strategy across different
datasets accumulated utilizing various devices with various
hardware specifications.

Csengul et al. [42] propose a smartwatch-based FDS
that can differentiate between various activities, including
falling, sitting, squatting, running, and walking. The system
collects acceleration and gyroscope sensor data through a
mobile app. It uses a deep learning algorithm based on the
bi-directional long short-term memory (BiLSTM) neural net-
work to classify the data in the cloud. The system achieves

high accuracy rates of 97.35% for detecting falls with all
activities considered and perfect accuracy for binary classi-
fication (falling vs. all other activities). The system uses Bica
Cubic Hermite interpolation to boost the data available for
training, and 38 statistical data features are used as input
to the classifier, which is calculated using a rolling update
approach.

Wu et al. [22] present a model based on Gated Recurrent
Units (GRU) for automatic feature extraction in FDS. The
study evaluates the proposed approach against six traditional
machine learning-based classifiers and three other deep learn-
ing approaches using two publicly available datasets gathered
from mobile sensors. The results demonstrate that the sug-
gested model outperforms the other methods by achieving
accuracies of 90.69%.

Lin et al. [24] address the issue of the high incidence
of accidental falls among elderly individuals in Taiwan and
propose an FDS that does not need the use of sensors.
Instead, the proposed system employs computer vision and
machine learning algorithms. The system uses OpenPose,
a real-timemulti-person 2D pose estimationmethod, to detect
human activity by identifying changes in joint point locations.
The system effectively filters ambient environmental noise
to improve accuracy. The paper uses single-view images
and experiments with time series recurrent neural networks,
LSTM, and GRU architectures to continuously capture the
differences in joint human points to reduce equipment costs.
Empirical outcomes demonstrate that the proposed model
outperforms the baseline, achieving a fall detection accuracy
of 98.2% with a 9.3% improvement. This system delivers a
cost-effective and accurate solution for fall detection without
requiring users to wear sensors.

Li et al. [25] proposed a multi-layer bi-LSTM network
framework that integrates wearable sensors and radar data
for detecting daily activity patterns and high-risk events such
as falls. The framework uses soft feature fusion, two robust
hard-fusion methods, and a hybrid fusion approach to achieve
approximately 96% accuracy in identifying continuous activ-
ities and fall events. The proposed approach is validated
through a ‘‘leaving one participant out’’ method [23], [25].
It shows that the hybrid-fusion approach stabilizes the clas-
sification outcome among various participants, reducing
accuracy variance and increasing worst-case accuracy. The
study highlights the potential of multimodal sensor fusion for
reliable and accurate fall detection.

Want et al. [43] proposed an FDS that utilizes multiple
sensors and considers fall direction a multi-class problem to
enhance the performance. The approach employs wearable
sensors and a Multi-source CNN Ensemble (MCNNE) struc-
ture to extract features more efficiently. The data from various
sensors are preprocessed and combined to create a compre-
hensive feature map. Compared to single CNN structures and
different ensemble bi-model networks, MCNNE performs
more promisingly. This approach offers a reliable and precise
fall detection system that employs multiple sensors and a
robust feature extraction technique.
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TABLE 2. The table provides information on the two datasets used in the study, namely D1 (SisFall) and D2 (UMAFall), as well as the combined dataset
D3 (D1+D2).

He et al. [26] introduced an FDS that addresses the limita-
tions of Bluetooth-based wearable technology by integrating
a sensor board with low-power ZigBee and MPU6050. This
sensor board samples and caches three-axial acceleration and
angular velocity data in sleep mode, which is transmitted to
the server via ZigBee with low power consumption. The data
is then normalized, cached in a sliding window, and mapped
into an RGB bitmap, which is used to train a fall detection
CNN to identify falls from the movements of everyday liv-
ing. The method achieves an average accuracy of 98.61%,
a sensitivity of 98.62%, and a specificity of 99.80%, making
it appropriate for fall sensing in elderly residents with high
accuracy and low power consumption.

Li et al. [44] proposed a novel deep learning model, TCN-
GRU, for fall detection in elderly individuals using inertial
sensors. The model outperformed other algorithms in nearly
all four performance metrics examined for two open-source
datasets, achieving prediction accuracy of 99.5% and 97.6%
and F1_score of 98.9% and 97.6%, respectively. Despite a
small data volume, the proposed model had higher detection
accuracy and correctly detected all types of fall events from
ten primary daily activity groups. The paper suggests that
the proposed TCN-GRU model can be used for real-time,
automatic fall detection using the IoT.

Zerrouki et al. [27] presented a fall detection strategy
that uses accelerometric data and variations in human sil-
houette shape. The exponentially weighted moving average
(EWMA) monitoring scheme is used to detect potential falls,
and the support vector machine (SVM) algorithm is used to
distinguish true falls from fall-like events based on features
corresponding to detected falls. The approach detects and
classifies falls accurately, with the EWMA-SVM approach
proving superior to other commonly used classifiers.

Furthermore, Table 1 provides a summary of the
above-mentioned fall detection methods along with their
limitations. The remainder of the paper will focus on our pro-
posed approach’s performance and computational complexity
and provide a theoretical basis for why it should outperform
existing fall detection algorithms. The performance will be
evaluated using standard metrics such as accuracy, precision,
recall sensitivity, and specificity and compared to state-of-
the-art approaches on the same datasets. Furthermore, wewill
provide a theoretical justification for why our approach
should perform better and be more computationally efficient,
based on using convolutional neural networks for feature
extraction and long short-term memory networks for mod-
eling temporal dynamics.

III. METHODS AND MATERIALS
In this section, we explain the data pre-processing tech-
niques and the methodology employed in this research, which
includes the proposed framework, baseline architectures, and
algorithm.

A. DATASET DESCRIPTION
The SisFall and UMAFall datasets were used in this
research to evaluate the proposed approach for fall detec-
tion. Both the SisFall and UMAFall datasets consist of
annotated video recordings of emulated falls and non-fall
events [45].

The SisFall dataset utilized in this study is publicly avail-
able. It comprises annotated video recordings of falls and
non-falls collected from participants of various ages, includ-
ing young and elderly individuals. The dataset features
recordings captured within the Gym Hall environment. Data
is collected using an external sensing mote fitted with two
accelerometers (A1 & A2) and a gyroscope positioned at
the participant’s waist. The video data is synchronized with
the sensor information, allowing for accurate labeling of the
recorded events. The dataset contains 4505 fall and non-fall
events, providing a comprehensive range of data to inform
the development of the proposed ensemble-based deep neural
network approach.

The UMAFall dataset utilized in this study is a publicly
available resource featuring annotated video recordings of
falls and non-falls collected from elderly participants. The
dataset encompasses recordings captured within a Home
environment. It includes accelerometer and gyroscope data
collected via a smartphone and four external Inertial Mea-
surement Units (IMUs) from five distinct sensing points,
including the Ankle, Chest, Thigh (right trouser pocket),
Waist, and Wrist. The dataset comprises 531 fall and non-
fall events, providing a diverse range of data to facilitate
the evaluation of the proposed ensemble-based deep neural
network approach.

To evaluate the effectiveness of the proposed model,
we conducted testing on both individual datasets separately,
as well as on a mixed dataset comprising data from both the
SisFall and UMAFall datasets. Table 2 presents a detailed
explanation of the structure and characteristics of the utilized
datasets.

Furthermore, Figure 1 presents a schematic diagram of
annotations that displays the 3-axis acceleration data of vari-
ous samples.
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FIGURE 1. The figure depicts the annotation of accelerometer sensor data for various states: (a) represents
a non-fall state where no fall occurred; (b) represents a combination of non-fall and pre-fall states where
the fall is initiated but not yet impacted on the ground; and (c) represents a combination of non-fall,
pre-fall, and fall states where the fall is initiated and impacts on the ground.

B. DATA PRE-PROCESSING
The SisFall and UMAFall dataset was used for this study,
which contains accelerometer and gyroscope data along with

labels for falls and activities of daily living (ADLs). The raw
sensor data was preprocessed to extract relevant features and
prepare it for use in the proposed model.

64102 VOLUME 11, 2023



M. M. Kabir et al.: Secure Your Steps: A Class-Based Ensemble Framework for Real-Time Fall Detection

First, the data were resampled to a fixed sample rate
of 100 Hz to ensure consistency across all samples. The data
was then segmented into fixed-length windows of 3 seconds,
with an overlap of 50% between adjacent windows.

Next, the data were normalized by subtracting the mean
and dividing by the standard deviation for each sensor’s data.
This normalization step ensures that the data has zero mean
and unit variance, which is essential for training deep learning
models. The windows were converted into 3D tensors with
dimensions (samples, timesteps, and features) to prepare the
data for use in the proposed model.

Finally, the data was split into training, validation, and
test sets using a 70:15:15 ratio respectively. This ratio has
been widely used in previous studies on fall detection and
classification using accelerometer and gyroscope data, mak-
ing it a reasonable choice for our study [46], [47], [48].
In addition, as the sensor data contains a time component,
it is crucial to handle the data split to preserve the temporal
order of the sensor readings, ensuring the generalizability
of the proposed approach [49]. Thus we applied a stratified
splitting strategy that maintains the temporal order of the
data samples while ensuring a balanced representation of the
three falling process classes (non-fall, pre-fall, and fall) in
each subset. To elaborate on the data split process, we first
randomly shuffled the dataset while keeping the original
order of consecutive samples from the same individual intact.
This shuffling was performed to prevent any bias that might
arise from the dataset’s initial ordering. Subsequently, the
stratified splitting was carried out to ensure that each subset
maintains the temporal sequence of the sensor readings while
containing a proportional representation of the falling process
classes. The training set was utilized for training the parame-
ters of the class ensemble framework, allowing the model to
learn from a diverse range of falling process instances. The
validation set was employed for hyperparameter tuning and
model selection, enabling us to optimize the performance of
the framework. Finally, the testing set, which was completely
disjointed from the training and validation sets, was used
to final evaluate the framework’s performance. By adopting
this stratified splitting strategy, we aim to mimic real-world
scenarios where the model needs to process incoming sensor
data in real time while considering the temporal dynamics of
the falling process. This approach ensures that our evaluation
reflects the framework’s ability to generalize to unseen data
and effectively detect falls.

The labels for each window were also one-hot encoded to
enable multiclass classification of the falling processes (non-
fall, pre-fall, and fall). The algorithm 1, presented below,
illustrates the various techniques used to prepare the data for
the proposed deep learning model.

The algorithm consists of a main function PreprocessData,
and a helper function NormalizeData. The main function
takes in raw sensor data X and returns normalized and
segmented data for use in a deep learning model. The
NormalizeData function is a helper function that takes in seg-
mented data X and returns the normalized data. It computes

Algorithm 1 Data Preprocessing
Require: Raw sensor data from SisFall and UMAFall

dataset
Ensure: Normalized and segmented data for use in the

deep learning model
function PreprocessData(X)

Xresample← ResampleData(X , 100 Hz)
Xsegments← SegmentData(Xresample, 3 sec, 50%

overlap)
Xnorm← NormalizeData(Xsegments)
Xtensors← ConvertToTensors(Xnorm, 300 timesteps)
Xtrain,Xval,Xtest , ytrain, yval, ytest ←

TrainValTestSplit(Xtensors, y, 70:15:15)
ytrain, yval, ytest ← OneHotEncodeLabels(ytrain, yval ,

ytest )
return Xtrain,Xval,Xtest , ytrain, yval, ytest

end function
function NormalizeData(X)

mean← ComputeMean(X )
std ← ComputeStd(X )
Xnorm← X−mean

std
return Xnorm

end function

FIGURE 2. Class-based ensemble method of deep learning models.

each sensor channel’s mean and standard deviation and then
applies the normalization formula to each data point.

C. BASELINE ARCHITECTURE
The proposed method employs a class-based ensemble
approach to enhance the performance of the conventional
deep learning model. Figure 2 illustrates the class-based
ensemble method used in deep learning architecture.

In Figure 2, the class-based ensemble method is shown
to begin with the extraction of feature maps through a head
model. The ensemble method then employs separate Ensem-
ble models to learn the features specific to each class: fall,
pre-fall, and non-fall.
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Figure 3 depicts the architecture proposed in this research,
which was developed after evaluating various ensemble
methods.

The following sections describe in detail the feature extrac-
tor model, ensemble model, and softmax function used in the
proposed method.

1) FEATURE EXTRACTOR MODEL
The CNN architecture comprised multiple layers, including
convolutional, pooling, and fully connected layers, which
were utilized to extract relevant features from the input data.

The equations for the convolution layer can be represented
as follows:

yi,j = σ

( ∑
k,l

xi+k,j+lwk,l + b
)

(1)

where x is the input data, y is the output feature map, w is the
kernel (or filter) used for convolution, b is the bias term, and σ

is an activation function, such as ReLU, which is commonly
used in CNNs.

Then the pooling layer is used to reduce the feature maps’
dimensionality, which helps reduce the computational cost
and prevent overfitting. Here max pooling is used, which
selects the maximum value from each pooling region. The
equations for the max pooling operation can be represented
as follows:

yi,j = max
k,l

xi+k,j+l (2)

where x is the input data and y is the output of the pooling
layer.

Finally, the fully connected layers combine the local fea-
tures into global features that can be used for classification.
The equations for the fully connected layer can be represented
as follows:

y = σ

( ∑
i

wixi + b
)

(3)

where x is the input feature vector, w is the weight vector, b
is the bias term, and σ is the activation function, such as soft-
max, which is commonly used for multiclass classification
tasks.

After the fully connected layers, we obtained a feature
vector that was fed into the ensemble of LSTM models for
classification.

2) ENSEMBLE CONSTRUCTION
We used long short-term memory models to classify fall, pre-
fall, and non-fall events based on the features extracted by the
CNN. LSTMs are a type of recurrent neural network that can
capture temporal dependencies in sequential data.

We designed three different LSTM models, one for each
class, that take as input a sequence of feature vectors and
output the corresponding class probability. Let xt be the
feature vector at time step t , and let ht and ct be the hidden

state and cell state of the LSTM at time step t . The LSTM
model can be defined as:

ht , ct = LSTM (xt , ht−1, ct−1) (4)

where LSTM is the LSTM function, which consists of an
input gate, forget gate, output gate, and cell gate. The output
of the LSTM at the last time step is fed into a fully connected
layer with a softmax activation function to obtain the class
probabilities.

We constructed an ensemble of the three LSTM models to
improve the classification performance. Let M1,M2,M3 be
the three LSTMmodels for classifying fall, pre-fall, and non-
fall events. The ensemble takes as input the feature vectors
x1, x2, . . . , xT . It produces three sets of class probabilities
p1,p2,p3, where pi = [pi1, pi2, pi3] is a vector of probabili-
ties for classifying the i-th event as fall, pre-fall, and non-fall,
respectively.

Each LSTMmodelMi produces its own set of probabilities
pi by applying the softmax activation function to the output
of the last fully connected layer. Let oi be the output of the
last fully connected layer of LSTM modelMi:

oi = FC(hiT ) (5)

where hiT is the hidden state of LSTM model Mi at the last
time step T , and FC is the fully connected layer.
Then, the probabilities pi are obtained by applying the

softmax function to oi:

pij =
eoij∑3
k=1 e

oik
, j = 1, 2, 3 (6)

The final class probabilities p are obtained by taking the
average of the three sets of probabilities:

p =
1
3
(p1 + p2 + p3) (7)

Therefore, the ensemblemodel classifies an input sequence
x1, x2, . . . , xT as fall, pre-fall, or non-fall depending on the
class with the highest probability in p.

Algorithm 2 presents the ensemble construction used in the
proposed architecture.

This algorithm takes the feature vectors as input and returns
the final class probabilities by applying each LSTMmodel to
the input sequence, computing the softmax activation func-
tion for each output, and then averaging the three sets of
probabilities.

3) SOFTMAX
The final step of the proposed method involves applying the
softmax function to the output of the ensemble to obtain the
corresponding class probabilities. The softmax function takes
as input a vector o = [o1, o2, o3] and returns a vector of
probabilities p = [p1, p2, p3] that sum up to 1. The softmax
function is defined as:

pi =
eoi∑3
j=1 e

oj
(8)
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FIGURE 3. Proposed class-based ensemble method between CNN and LSTM.

Algorithm 2 Ensemble Construction
Input: Feature vectors x1, x2, . . . , xT
Output: Class probabilities p = [p1, p2, p3]
Apply each LSTM modelMi to the input sequence
x1, x2, . . . , xT to obtain the output oi = FC(hiT ), where
hiT is the hidden state ofMi at the last time step T ;

Apply the softmax activation function to each output oi
to obtain the class probabilities pi = [pi1, pi2, pi3]:

for i = 1 to 3 do
for j = 1 to 3 do

pij = eoij∑3
k=1 e

oik
;

Compute the average of the three sets of probabilities
p = 1

3 (p1 + p2 + p3);
return p

where i = 1, 2, 3 and oi is the i-th element of the output vector
o.

The final classification decision is made based on the
class probabilities p. The class with the highest probability is
selected as the predicted class. Mathematically, the predicted
class ŷ is given by:

ŷ = argmax
i=1,2,3

pi (9)

where pi is the probability of class i. If ŷ = 1, the input
sequence is classified as a fall event. If ŷ = 2, the input
sequence is classified as a pre-fall event. If ŷ = 3, the
input sequence is classified as a non-fall event.

D. PROPOSED ALGORITHM
This section presents an algorithm 3 that demonstrates the
proposed methods.

The algorithm presented is a class-based ensemble archi-
tecture for the fall detection system. It takes sensor data x ∈
RT×D as input, where T is the number of time steps and D is
the dimensionality of the sensor data. The algorithm’s output
is the predicted fall class ŷ ∈ 0, 1, 2, where 0 represents non-
fall, 1 represents pre-fall, and 2 represents fall.

The algorithm consists of a head model and an ensemble
model. The head model is a convolutional neural network that
extracts features from the input sensor data, which are then
reduced by feature map reduction. Let z ∈ RT ′×D′ be the
feature map obtained from the CNN, where T ′ < T andD′ <
D. The reduced feature map is denoted by z′ ∈ RT ′′×D′′ .
The ensemble model consists of a Long Short Term Mem-

ory for each target class c ∈ 0, 1, 2. Let hc ∈ RT ′′×H be
the hidden state sequence obtained from the LSTM for target
class c, where H is the hidden state dimensionality. The tem-
poral dynamics of the hidden state sequence are recognized
using a softmax function applied to the output of the LSTM,
which is then passed through a fully connected layer to obtain
the output sequence yc ∈ RT ′′×K , whereK = 3 is the number
of classes. The predicted class for target class c is denoted
by ŷc, which is obtained by taking the argmax of the output
sequence at time step T ′′.
The models are trained using cross-entropy loss on anno-

tated data and fine-tuned on new data for better performance.
Sensor data is input to the head model during testing, and the
feature map is passed to the ensemble models to obtain the
predicted fall class ŷ.

IV. RESULTS ANALYSIS
In this section, we elaborate on the experimental analysis,
which comprises the implementation environment and the
evaluation metrics employed to measure the models’ per-
formance. Subsequently, we comprehensively analyze the
experimental results to provide insights into the proposed
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Algorithm 3 Class-Based Ensemble Architecture for
FDS
1: Input: Sensor data x ∈ RT×D, where T is the time steps

and D is the sensor data dimensionality.
2: Output: Predicted fall class ŷ ∈ 0, 1, 2 (non-fall,

pre-fall, fall).
3: Head model:
4: Convolutional Neural Network: z = CNN(x), where

z ∈ RT ′×D′ is the feature map, T ′ < T and D′ < D.
5: Feature map reduction: z′ = reduce(z), where

z′ ∈ RT ′′×D′′ is the reduced feature map.
6: Ensemble model:
7: Long Short Term Memory for each target class
c ∈ 0, 1, 2:

8: LSTM model: hc = LSTMc(z′), where
hc ∈ RT ′′×H is the hidden state sequence, and H is the
hidden state dimensionality.

9: Temporal dynamics recognition:
yc = softmax(hc ·Wc + bc), where yc ∈ RT ′′×K is the
output sequence, and K = 3 is the number of classes.

10: Independent predictions: ŷc = argmax(yc,T ′′),
where ŷc is the predicted class for target class c.

11: Training:
12: Train Head model and Ensemble models on

annotated data using cross-entropy loss.
13: Fine-tune models on new data for better

performance.
14: Testing:
15: Input sensor data x to Head model.
16: Generate feature map z and pass it to Ensemble

models.
17: Obtain prediction for each target class c from its

Ensemble model.
18: Output predicted fall class ŷ = argmax(y·,T ′′),

where y·,T ′′ is the concatenation of the output
sequences for all target classes at time step T ′′.

method’s effectiveness, the influence of distinct factors on its
performance, and its practical implications.

A. EXPERIMENTAL SETUP
The Keras and TensorFlow deep learning frameworks were
utilized to implement the neural network models. The experi-
ments were conducted in a virtual environment equipped with
an RTX3070 GPU, a Ryzen 7 processor, 16 GB of RAM,
and a 1 TB solid-state drive. The operating system of the
virtual environment was Ubuntu 20.04 LTS, and the soft-
ware environment consisted of Python 3.8, Keras 2.6.0, and
TensorFlow 2.6.0. To ensure the reproducibility of the exper-
imental results, the virtual environment was created using the
Anaconda package manager. To expedite the training of the
neural networkmodels, the CUDA toolkit and cuDNN library
were installed and configured to function with the GPU.

B. EVALUATION METRICES
To evaluate the performance of the proposedmethod, we used
three evaluationmetrics: accuracy, sensitivity, and specificity,
for each class.

1) ACCURACY
This metric measures the overall classification accuracy of
the model and is defined as the proportion of correctly clas-
sified samples among all samples in the test set. Formally, let
yi be the true label of the i-th sample and ŷi be the predicted
label of the i-th sample. Then, the accuracy of the model is
given by:

Acc =
1
N

N∑
i=1

[
yi = ŷi

]
(10)

where N is the total number of samples in the test set, and
[yi = ŷi] is an indicator function that equals 1 if yi = ŷi and
0 otherwise.

2) SENSITIVITY
Sensitivity is also known as Recall or TPR (true positive rate).
This metric measures the proportion of true positive samples
(i.e., fall samples correctly classified as falls) among all
positive samples (i.e., fall samples) in the test set. Formally,
let P be the set of all positive samples in the test set, and TP
be the set of true positive samples. Then, the sensitivity of the
model is given by:

Sen =
|TP|
|P|

(11)

where | · | denotes the cardinality of a set.

3) SPECIFICITY
This metric measures the proportion of true negative samples
(i.e., non-fall samples correctly classified as non-falls) among
all negative samples (i.e., non-fall samples) in the test set.
Formally, let N be the set of all negative samples in the test
set, and TN be the set of true negative samples. Then, the
specificity of the model is given by:

Spec =
|TN |
|N |

(12)

4) PRECISION
Precision measures the proportion of true positives among
the total predicted positives. It is defined as the ratio of true
positive predictions (TP) to the sum of true positive and false
positive predictions (FP), which can be expressed as follows:

Prec =
TP

(TP+ FP)
(13)

These metrics provide a comprehensive evaluation of our
proposed model’s performance in terms of overall accuracy
and the ability to detect falls and non-falls correctly.
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TABLE 3. Accuracy, Specificity, and Sensitivity of the proposed method on the D1, D2, and D3 datasets.

TABLE 4. Precision, Recall, and F1-score of the proposed method on the D1, D2, and D3 datasets.

5) F1-SCORE
It is the harmonic mean of precision and recall, giving equal
importance to both metrics. The F1-score ranges between
0 and 1, with 1 indicating perfect precision (P) and recall (R).
The F1-score is calculated using the following formula:

F1− score = 2×
P× R
(P+ R)

(14)

C. RESULTS
Table 3 displays the accuracy, sensitivity, and specificity of
the proposed method under different dataset configurations,
namely D1, D2, and D3. In dataset D1, the proposed method
achieved an accuracy of 0.9656 for non-fall events, 0.9457 for
pre-fall events, and 0.9734 for fall events. The specificity
of the proposed method was 0.9718 for non-fall events,
0.9628 for pre-fall events, and 0.9706 for fall events. The
sensitivity of the proposed method was 0.9610 for non-fall
events, 0.9528 for pre-fall events, and 0.9822 for fall events.
For dataset D2, the proposed method achieved an accuracy
of 0.9736 for non-fall events, 0.9560 for pre-fall events, and
0.9843 for fall events. The specificity of the proposed method
was 0.9702 for non-fall events, 0.9514 for pre-fall events, and
0.9626 for fall events. The sensitivity of the proposed method
was 0.9602 for non-fall events, 0.9612 for pre-fall events,
and 0.9832 for fall events. For dataset D3, the proposed
method achieved an accuracy of 0.9546 for non-fall events,
0.9645 for pre-fall events, and 0.9612 for fall events. The
specificity of the proposed method was 0.9646 for non-fall
events, 0.9412 for pre-fall events, and 0.9687 for fall events.
The sensitivity of the proposed method was 0.9588 for non-
fall events, 0.9600 for pre-fall events, and 0.9812 for fall
events.

Table 4 reports the precision, recall, and F1-score of the
proposed method on three datasets (D1, D2, and D3). For
the D1 dataset, the proposed method achieved a precision of
0.9451 for the Non-Fall class, 0.9315 for the Pre-Fall class,
and 0.9524 for the Fall class. The recall values for Non-Fall,
Pre-Fall, and Fall classes were 0.9610, 0.9528, and 0.9822,

respectively. The F1-score values for Non-Fall, Pre-Fall, and
Fall classes were 0.9528, 0.9520, and 0.9670, respectively.
For the D2 dataset, the proposed method achieved a precision
of 0.9464 for the Non-Fall class, 0.9320 for the Pre-Fall class,
and 0.9658 for the Fall class. The recall values for Non-Fall,
Pre-Fall, and Fall classes were 0.9602, 0.9612, and 0.9832,
respectively. The F1-score values for Non-Fall, Pre-Fall, and
Fall classes were 0.9533, 0.9465, and 0.9744, respectively.
For the D3 dataset, the proposed method achieved a precision
of 0.9245 for the Non-Fall class, 0.9398 for the Pre-Fall class,
and 0.9425 for the Fall class. The recall values for Non-Fall,
Pre-Fall, and Fall classes were 0.9588, 0.9600, and 0.9812,
respectively. The F1-score values for Non-Fall, Pre-Fall, and
Fall classes were 0.9413, 0.9499, and 0.9614, respectively.

We initially trained our proposed class-based ensemble
approach with various architectural configurations to achieve
these results. As a feature extractor model, we experimented
with four combinations: convolutional layers with max pool-
ing layers, convolutional layers with average pooling layers,
separable convolutional layers with max pooling layers, and
separable convolutional layers with average pooling lay-
ers. To enhance the performance of the feature extractor
model, we further used ensemble methods including LSTM,
GRU, and Bi-directional LSTM. The corresponding results
obtained from all the aforementioned combinations are pre-
sented in Figure 4.

Based on the results shown in Figure 4, it can be observed
that the combination of convolutional layers with max pool-
ing layers and LSTM method produces the highest accuracy
for all sets of data. Therefore, we propose this combination
as the optimal architecture for our proposed fall detection
model.

D. HYPER-PARAMETERS TUNING
Upon finalizing the model combination, the proposed
approach incorporated various hyperparameters, including
the number of filters, kernel size, dropout rate, learning
rate, and LSTM cells. To determine their optimal values,
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FIGURE 4. The figure illustrates the average accuracy of 3 classes (Pre-fall, Non-fall, Fall)
obtained from different combinations of feature extractor and ensemble methods.

TABLE 5. Comparison of Accuracy, Specificity, and Sensitivity of the proposed method on the D1 dataset.

a grid search technique was employed. Here, we provide an
overview of each hyperparameter and the process used to
compute them. The number of filters in the convolutional
layers was carefully selected by exploring different values

such as 16, 32, and 64. Through rigorous evaluation, we iden-
tified that utilizing 16 and 32 filters yielded favorable model
performance. Additionally, we conducted experiments with
multiple kernel sizes, including 3×3 and 5×5, to assess their
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TABLE 6. Comparison of fall detection methods on the SisFall dataset regarding accuracy, sensitivity, and specificity.

TABLE 7. Hyperparameter values and their corresponding values used in
the grid search for the proposed approach.

effectiveness in capturing spatial information. Based on our
findings, the 3× 3 kernel size demonstrated superior perfor-
mance. Furthermore, we investigated dropout rates, such as
0.2, 0.4, and 0.5, to balance model performance and general-
ization. Notably, a dropout rate of 0.5 exhibited impressive
results, leading us to select it as the optimal rate. As for
the learning rate, which governs the step size for parameter
updates during training, different values such as 0.001, 0.01,
and 0.1 were explored. After careful evaluation, we deter-
mined that a learning rate of 0.001 facilitated the fastest
convergence and exhibited the best performance. Regarding
the LSTM layer, we investigated the number of LSTMcells or
units to capture the temporal dynamics of the falling process.
We evaluated various values, including 64, 128, and 256,
intending to model long-term dependencies effectively. Our
experiments indicated that 128 and 64 LSTM cells were
more suitable for this task, improvingmodel performance and
capturing relevant temporal patterns. These selected hyperpa-
rameter values were obtained through the rigorous grid search
process, ensuring their optimal configuration for the proposed
approach. Table 7 provides information on the hyperparame-
ters used in the grid search for the proposed approach.

E. BENCHMARK
Table 5 compares the proposed method with three state-
of-the-art approaches regarding accuracy, sensitivity, and
specificity. The results indicate that our proposed method
outperforms all three methods in terms of accuracy, achiev-
ing scores of 0.9656, 0.9457, and 0.9734 for the Non-fall,
Pre-fall, and Fall classes, respectively. While the method
proposed by Torti et al. [51] exhibits better specificity for the
Non-fall class, and the method proposed by Musci et al. [50]
has better specificity for the Fall class, our method achieves
the best specificity for the Pre-fall class. Moreover, our
proposed method surpasses all three methods in terms of

sensitivity, achieving scores of 0.9610, 0.9528, and 0.9822 for
each respective class. In addition table 6 compares various
fall detection methods in terms of their accuracy, sensitivity,
and specificity on the SisFall dataset. The methods compared
in the table include Decision tree, Support vector machine,
Ensemble learning, RNN (LSTM), RNN, and Class-based
Ensemble Method. Based on the table, the proposed method
(Class-based Ensemble Method) achieves an accuracy of
0.9616, which is comparable to the best-performing methods
in the literature. The sensitivity and specificity metrics of the
proposed method are also relatively high (0.9653 and 0.9684,
respectively), indicating that it can accurately detect falls and
non-falls.

V. DISCUSSION
In this study, we proposed a deep learning architecture for fall
detection that utilizes a class-based ensemble method. Our
approach involved a CNN-based feature extraction module
and an ensemble of three LSTM models, each trained to
classify one of the three classes: fall, pre-fall, and non-fall.
The final classification decision was made using the softmax
function applied to the ensemble’s output. Our experiments
demonstrated that the proposed method achieved better per-
formance than state-of-the-art approaches for elderly people.
The results show that the class-based ensemble approach can
effectively enhance classification accuracy by learning the
features specific to each class.

The proposed architecture allows for the simultaneous
extraction of spatial and temporal features from accelerom-
eter and gyroscope data by combining the strengths of CNNs
in capturing spatial features and LSTMs in modeling tem-
poral dependencies. This leads to improved performance in
fall detection compared to existing methods that use either
CNNs or LSTMs alone. The proposed approach can be
used in real-time fall detection systems. The methodology
combines convolutional neural networks for robust feature
extraction and long short-term memory networks for mod-
eling temporal dynamics, making it suitable for real-time fall
detection applications. The study’s findings suggest that the
proposed approach achieves commendable results in identify-
ing pre-fall and fall states, whichmakes it a promisingmethod
for real-time fall detection systems.

During the tuning phase of our fall detection method,
we observed that the convolutional layers outperformed the
separable convolutional layers. We attribute this to the fact
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that falls usually involve intricate body movements and envi-
ronmental interactions, necessitating a high degree of spatial
awareness and pattern recognition. Convolutional layers can
better capture complex spatial patterns, while separable con-
volutional layers may not capture the same level of detail
and context [56]. This is due to their ability to learn local
feature representations and hierarchically combine them to
learn more abstract and complex patterns. In the context
of fall detection using accelerometer and gyroscope data,
convolutional layers effectively capture relevant features that
distinguish between different classes of motion [57]. Our
experimental results indicate that max-pooling layers outper-
form average pooling layers in fall detection. This can be
attributed to the fact that max-pooling layers retain the most
significant features of the input while discarding irrelevant
and noisy information. In fall detection, capturing critical
features of fall-related movements, such as sudden changes
in acceleration and orientation, is crucial. Max-pooling layers
excel in capturing these critical features and preserving their
spatial relationships, whichmay not be as efficiently achieved
with average pooling layers. Thus, using max-pooling layers
in our method enhances the accuracy and reliability of fall
detection.

Our experimental results also show that LSTM outper-
forms GRU and Bi-directional LSTM as an ensemble method
for each class in fall detection. This can be attributed to the
fact that LSTM has more trainable parameters than GRU,
enabling it to capture more complex temporal dependencies
in the data. Moreover, LSTM’s gating mechanism allows it to
retain or discard information from previous time steps selec-
tively. It can be particularly useful in detecting falls involving
sudden acceleration and orientation changes. In contrast,
Bi-directional LSTMmay not be as effective in fall detection,
as it requires access to future time steps to make predictions,
which may not always be available in real-time applications.
Additionally, the complexity of the bi-directional architecture
may lead to overfitting and reduced generalization perfor-
mance. Therefore, our experiments indicate that using LSTM
as the ensemble method is a more suitable choice for fall
detection.

The use of CNN-based feature extraction also helped to
overcome some of the challenges associated with fall detec-
tion, such as variations in lighting, occlusion, and differences
in clothing and body shapes. Furthermore, the proposed
architecture is computationally efficient and essential for
real-time fall detection applications due to its class-based
mechanism. In traditional approaches to fall detection using
deep neural networks, a single model is trained to classify all
three classes of falling processes (non-fall, pre-fall, and fall)
based on accelerometer and gyroscope data. This model must
be trained on a large amount of data and optimized for high
accuracy in all three classes, which can be computationally
intensive. In the class-based ensemble framework, on the
other hand, separate models are trained to classify each class
of falling process individually. This allows each model to
specialize in detecting a particular type of fall rather than

being optimized for all three categories. Ensemble learning
combines the outputs of the individual models to obtain a
final prediction. Hence this approach has been shown to
improve overall accuracy while reducing the computational
cost compared to traditional techniques.

In addition, the full sensor-sets used in D1 and D2 are
highly applicable in real-life scenarios. The external sensing
mote with two accelerometers and a gyroscope used in D1 is
a compact and wearable device that can easily be attached to
clothing or worn on the body without causing inconvenience
or discomfort to the user. Similarly, the smartphone and four
external IMUs used in D2 are commonly available devices
that can be easily carried in a pocket or attached to clothing.
These sensor sets are practical and cost-effective compared
to other more sophisticated and expensive sensor systems.
This makes them more accessible to a wider population
and allows easier deployment in real-world fall detection
scenarios. However, these sensor configurations may require
additional devices or equipment worn by the user, which may
not be comfortable for the user.

Despite the promising results achieved in this study, there
is still room for further improvements in the proposed
method. For example, while we used a class-based ensem-
ble approach, other ensemble methods could be explored
to improve the classification performance further. The pro-
posed architecture can also be optimized for different input
modalities, such as depth or infrared cameras, to enhance
detection accuracy in low light or occluded environments.
Another direction for future research is to investigate the
interpretability of the proposed architecture. While deep
learningmodels have shown impressive results inmany appli-
cations, their black-box nature limits their interpretability.
Therefore, exploring methods to extract meaningful informa-
tion from the features learned by the proposed architecture
can help to build trust and understanding of the model’s
decision-making process.

One limitation of this study is the dataset used both
UMAFall and SisFall are datasets of emulated falls. Emu-
lated falls have some limitations compared to real-world
falls [45]. In real-world falls, there is a higher degree of
variability in terms of how the falls occur, the physical
environment where the fall occurs, and the demographic
characteristics of the fallers. On the other hand, emulated falls
are created under controlled conditions, and the variability
in the falling process is limited. As a result, the datasets
of emulated falls may not capture all the variations and
subtleties of real-world falls, making it challenging to gen-
eralize the results to the real-world fall detection scenario.
Another limitation is that the UMAFall dataset only included
subjects up to 55, and the two subjects over 50 did not
experience any falls. Similarly, in SisFall, the 15 healthy
elderly subjects did not experience any falls. In addition to
the differences between emulated and real-world falls, it is
also possible that there are variations in fall characteris-
tics and dynamics between younger individuals and older
individuals.
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The computational complexity of this approach is rela-
tively high due to the use of multiple layers in both the CNN
and LSTM networks. The CNN network comprises several
convolutional layers that perform feature extraction from the
input data. The LSTM network, on the other hand, utilizes
recurrent connections that enable the network to retain infor-
mation over time, thereby capturing the temporal dynamics
of the falling process. The proposed approach’s complexity
is increased using class ensembles, which involves training
multiple models on the same data but with different initial
conditions. The output of each model is then aggregated to
obtain a final prediction. This technique requires training
and storing multiple models, leading to higher computational
and memory requirements. Despite its high computational
complexity, the proposed approach achieves state-of-the-art
performance in fall detection, indicating that the benefits
outweigh the computational costs. However, optimizing the
approach’s computational efficiency without compromising
performance is an area for future research.

In addition, in our future work, we aim to propose
a comprehensive fall prevention system that will address
key aspects such as sensor calibration, robustness, battery
life, sensor placement, and evaluation in real-world settings
specifically for older adults. Also, we plan to conduct more
statistical tests to compare the detection performance of the
investigated models.

VI. CONCLUSION
The proposed ensemble CNN-LSTM-based fall detection
system for older adults has shown promising results in detect-
ing pre-fall, fall, and non-fall events. Combining the strengths
of convolutional neural network and long short-term memory
models, the proposed system achieved 97.34% accuracy in
detecting falls, 94.57% accuracy in detecting pre-fall events,
and 96.56% accuracy in detecting non-fall events for well-
known SiSFall. The system’s non-invasive, cost-effective,
and easily deployable nature makes it a valuable tool for fall
detection, a critical issue for the health and safety of older
adults. Future work could focus on optimizing the model’s
hyperparameters, exploring the use of additional sensor data,
and conducting large-scale studies to evaluate the system’s
effectiveness in real-world settings. Overall, the proposed
system has great potential to become an essential tool for fall
detection in the future, making it a valuable contribution to
healthcare technology.

REFERENCES

[1] WHO Global Report on Falls Prevention in Older Age, World Health
Organization, Geneva, Switzerland, 2008.

[2] M. Montero-Odasso, N. van der Velde, F. C. Martin, M. Petrovic,
M. P. Tan, J. Ryg, S. Aguilar-Navarro, N. B. Alexander, C. Becker, and
H. Blain, ‘‘World guidelines for falls prevention and management for
older adults: A global initiative,’’ Age Ageing, vol. 51, no. 9, 2022,
Art. no. afac205.

[3] L. Ren and Y. Peng, ‘‘Research of fall detection and fall prevention tech-
nologies: A systematic review,’’ IEEE Access, vol. 7, pp. 77702–77722,
2019.

[4] A. S. Syed, D. Sierra-Sosa, A. Kumar, and A. Elmaghraby, ‘‘A deep convo-
lutional neural network-XGB for direction and severity aware fall detection
and activity recognition,’’ Sensors, vol. 22, no. 7, p. 2547, Mar. 2022.

[5] A. S. Syed, D. Sierra-Sosa, A. Kumar, and A. Elmaghraby, ‘‘A hierarchical
approach to activity recognition and fall detection using wavelets and
adaptive pooling,’’ Sensors, vol. 21, no. 19, p. 6653, Oct. 2021.

[6] Md. M. Islam, O. Tayan, M. R. Islam, M. S. Islam, S. Nooruddin,
M. N. Kabir, and M. R. Islam, ‘‘Deep learning based systems developed
for fall detection: A review,’’ IEEE Access, vol. 8, pp. 166117–166137,
2020.

[7] S. Anjum, N. Khan, R. Khalid, M. Khan, D. Lee, and C. Park, ‘‘Fall
prevention from ladders utilizing a deep learning-based height assessment
method,’’ IEEE Access, vol. 10, pp. 36725–36742, 2022.

[8] T. Tongskulroongruang, P. Wiphunawat, W. Jutharee, W. Kaewmahanin,
T. Rassameecharoenchai, T. Jennawasin, and B. Kaewkamnerdpong,
‘‘Comparative study on fall detection using machine learning approaches,’’
in Proc. 19th Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf.
Technol. (ECTI-CON), May 2022, pp. 1–4.

[9] D. K. Agrawal, W. Usaha, S. Pojprapai, and P. Wattanapan, ‘‘Fall risk
prediction using wireless sensor insoles with machine learning,’’ IEEE
Access, vol. 11, pp. 23119–23126, 2023.

[10] S. Usmani, A. Saboor, M. Haris, M. A. Khan, and H. Park, ‘‘Latest
research trends in fall detection and prevention using machine learning:
A systematic review,’’ Sensors, vol. 21, no. 15, p. 5134, Jul. 2021.

[11] S. Rastogi and J. Singh, ‘‘A systematic review on machine learning for fall
detection system,’’ Comput. Intell., vol. 37, no. 2, pp. 951–974, May 2021.

[12] G. Santos, P. Endo, K. Monteiro, E. Rocha, I. Silva, and T. Lynn,
‘‘Accelerometer-based human fall detection using convolutional neural
networks,’’ Sensors, vol. 19, no. 7, p. 1644, Apr. 2019.

[13] T. Han, W. Kang, and G. Choi, ‘‘IR-UWB sensor based fall detec-
tion method using CNN algorithm,’’ Sensors, vol. 20, no. 20, p. 5948,
Oct. 2020.

[14] L. Ma, M. Liu, N. Wang, L. Wang, Y. Yang, and H. Wang, ‘‘Room-
level fall detection based on ultra-wideband (UWB) monostatic radar and
convolutional long short-term memory (LSTM),’’ Sensors, vol. 20, no. 4,
p. 1105, Feb. 2020.

[15] S. A. Ajagbe and M. O. Adigun, ‘‘Deep learning techniques for detection
and prediction of pandemic diseases: A systematic literature review,’’
Multimedia Tools Appl., vol. 82, pp. 1–35, May 2023.

[16] D. Yacchirema, J. S. de Puga, C. Palau, and M. Esteve, ‘‘Fall detec-
tion system for elderly people using IoT and ensemble machine learning
algorithm,’’ Pers. Ubiquitous Comput., vol. 23, nos. 5–6, pp. 801–817,
Nov. 2019.

[17] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, ‘‘A survey on ensemble
learning,’’ Frontiers Comput. Sci., vol. 14, no. 2, pp. 241–258, Apr. 2020.

[18] A. Sucerquia, J. López, and J. Vargas-Bonilla, ‘‘SisFall: A fall and move-
ment dataset,’’ Sensors, vol. 17, no. 12, p. 198, Jan. 2017.

[19] E. Casilari, J. A. Santoyo-Ramón, and J. M. Cano-García, ‘‘Analysis of
a smartphone-based architecture with multiple mobility sensors for fall
detection,’’ PLoS ONE, vol. 11, no. 12, Dec. 2016, Art. no. e0168069.

[20] N. Maray, A. H. Ngu, J. Ni, M. Debnath, and L. Wang, ‘‘Transfer learning
on small datasets for improved fall detection,’’ Sensors, vol. 23, no. 3,
p. 1105, Jan. 2023.

[21] S. Y. Sheikh and M. T. Jilani, ‘‘A ubiquitous wheelchair fall detection sys-
tem using low-cost embedded inertial sensors and unsupervised one-class
SVM,’’ J. Ambient Intell. Humanized Comput., vol. 14, no. 1, pp. 147–162,
Jan. 2023.

[22] X. Wu, Y. Zheng, C.-H. Chu, L. Cheng, and J. Kim, ‘‘Applying deep
learning technology for automatic fall detection using mobile sensors,’’
Biomed. Signal Process. Control, vol. 72, Feb. 2022, Art. no. 103355.

[23] H. Li, A. Mehul, J. Le Kernec, S. Z. Gurbuz, and F. Fioranelli, ‘‘Sequential
human gait classification with distributed radar sensor fusion,’’ IEEE
Sensors J., vol. 21, no. 6, pp. 7590–7603, Mar. 2021.

[24] C.-B. Lin, Z. Dong, W.-K. Kuan, and Y.-F. Huang, ‘‘A framework for fall
detection based on OpenPose skeleton and LSTM/GRU models,’’ Appl.
Sci., vol. 11, no. 1, p. 329, Dec. 2020.

[25] H. Li, A. Shrestha, H. Heidari, J. L. Kernec, and F. Fioranelli, ‘‘Bi-LSTM
network for multimodal continuous human activity recognition and fall
detection,’’ IEEE Sensors J., vol. 20, no. 3, pp. 1191–1201, Feb. 2020.

[26] J. He, Z. Zhang, X. Wang, and S. Yang, ‘‘A low power fall sensing technol-
ogy based on FD-CNN,’’ IEEE Sensors J., vol. 19, no. 13, pp. 5110–5118,
Jul. 2019.

VOLUME 11, 2023 64111



M. M. Kabir et al.: Secure Your Steps: A Class-Based Ensemble Framework for Real-Time Fall Detection

[27] N. Zerrouki, F. Harrou, Y. Sun, and A. Houacine, ‘‘Accelerometer and
camera-based strategy for improved human fall detection,’’ J. Med. Syst.,
vol. 40, no. 12, pp. 1–16, Dec. 2016.

[28] M. Mubashir, L. Shao, and L. Seed, ‘‘A survey on fall detection:
Principles and approaches,’’ Neurocomputing, vol. 100, pp. 144–152,
Jan. 2013.

[29] V. Spasova and I. Iliev, ‘‘A survey on automatic fall detection in the context
of ambient assisted living systems,’’ Int. J. Adv. Comput. Res., vol. 4, no. 1,
p. 94, 2014.

[30] J. Gutiérrez, V. Rodríguez, and S. Martin, ‘‘Comprehensive review of
vision-based fall detection systems,’’ Sensors, vol. 21, no. 3, p. 947,
Feb. 2021.

[31] M. Amsaprabhaa, ‘‘Multimodal spatiotemporal skeletal kinematic gait
feature fusion for vision-based fall detection,’’ Expert Syst. Appl., vol. 212,
Feb. 2023, Art. no. 118681.

[32] A. Núñez-Marcos, G. Azkune, and I. Arganda-Carreras, ‘‘Vision-based fall
detection with convolutional neural networks,’’Wireless Commun. Mobile
Comput., vol. 2017, pp. 1–16, Dec. 2017.

[33] J.-L. Chua, Y. C. Chang, and W. K. Lim, ‘‘A simple vision-based fall
detection technique for indoor video surveillance,’’ Signal, Image Video
Process., vol. 9, no. 3, pp. 623–633, Mar. 2015.

[34] A. Ramachandran and A. Karuppiah, ‘‘A survey on recent advances in
wearable fall detection systems,’’ BioMed Res. Int., vol. 2020, pp. 1–17,
Jan. 2020.

[35] E. Casilari, R. Lora-Rivera, and F. García-Lagos, ‘‘A wearable fall
detection system using deep learning,’’ in Proc. Int. Conf. Ind., Eng.
Other Appl. Appl. Intell. Syst. Graz, Austria: Springer, Jul. 2019,
pp. 445–456.

[36] F. Wu, H. Zhao, Y. Zhao, and H. Zhong, ‘‘Development of a wearable-
sensor-based fall detection system,’’ Int. J. Telemedicine Appl., vol. 2015,
pp. 1–11, Jan. 2015.

[37] W. Saadeh, M. A. B. Altaf, and M. S. B. Altaf, ‘‘A high accuracy and
low latency patient-specific wearable fall detection system,’’ in Proc. IEEE
EMBS Int. Conf. Biomed. Health Informat. (BHI), Feb. 2017, pp. 441–444.

[38] F. Luna-Perejón, M. J. Domínguez-Morales, and A. Civit-Balcells, ‘‘Wear-
able fall detector using recurrent neural networks,’’ Sensors, vol. 19, no. 22,
p. 4885, Nov. 2019.

[39] A. Spagnolli, E. Guardigli, V. Orso, A. Varotto, and L. Gamberini, ‘‘Mea-
suring user acceptance of wearable symbiotic devices: validation study
across application scenarios,’’ in Proc. Int. Workshop Symbiotic Interact.
Helsinki, Finland: Springer, Oct. 2014, pp. 87–98.

[40] A. Puri, B. Kim, O. Nguyen, P. Stolee, J. Tung, and J. Lee, ‘‘User accep-
tance of wrist-worn activity trackers among community-dwelling older
adults: Mixed method study,’’ JMIR mHealth uHealth, vol. 5, no. 11,
p. e173, Nov. 2017.

[41] N. Zerrouki, F. Harrou, Y. Sun, A. Z. A. Djafer, and H. Amrane, ‘‘A sur-
vey on recent advances in fall detection systems using machine learning
formalisms,’’ in Proc. 7th Int. Conf. Frontiers Signal Process. (ICFSP),
Sep. 2022, pp. 35–39.

[42] G. Şengül, M. Karakaya, S. Misra, O. O. Abayomi-Alli, and R. Damaše-
vičius, ‘‘Deep learning based fall detection using smartwatches for health-
care applications,’’ Biomed. Signal Process. Control, vol. 71, Jan. 2022,
Art. no. 103242.

[43] L.Wang,M. Peng, and Q. Zhou, ‘‘Pre-impact fall detection based onmulti-
source CNN ensemble,’’ IEEE Sensors J., vol. 20, no. 10, pp. 5442–5451,
May 2020.

[44] Y. Li, Z. Zuo, and J. Pan, ‘‘Sensor-based fall detection using a combination
model of a temporal convolutional network and a gated recurrent unit,’’
Future Gener. Comput. Syst., vol. 139, pp. 53–63, Feb. 2023.

[45] E. Casilari and C. A. Silva, ‘‘An analytical comparison of datasets
of real-world and simulated falls intended for the evaluation of
wearable fall alerting systems,’’ Measurement, vol. 202, Oct. 2022,
Art. no. 111843.

[46] B. T. Nukala, N. Shibuya, A. Rodriguez, J. Tsay, J. Lopez, T. Nguyen,
S. Zupancic, and D. Y.-C. Lie, ‘‘An efficient and robust fall detection
system using wireless gait analysis sensor with artificial neural network
(ANN) and support vector machine (SVM) algorithms,’’ Open J. Appl.
Biosensor, vol. 3, no. 4, pp. 29–39, 2014.

[47] N. De Raeve, A. Shahid, M. de Schepper, E. De Poorter, I. Moerman,
J. Verhaevert, P. Van Torre, and H. Rogier, ‘‘Bluetooth-low-energy-based
fall detection and warning system for elderly people in nursing homes,’’
J. Sensors, vol. 2022, pp. 1–14, Jan. 2022.

[48] S. K. Yadav, A. Luthra, K. Tiwari, H. M. Pandey, and S. A. Akbar,
‘‘ARFDNet: An efficient activity recognition & fall detection system
using latent feature pooling,’’ Knowl.-Based Syst., vol. 239, Mar. 2022,
Art. no. 107948.

[49] S. Saeb, L. Lonini, A. Jayaraman, D. C. Mohr, and K. P. Kording, ‘‘The
need to approximate the use-case in clinical machine learning,’’ Giga-
Science, vol. 6, no. 5, May 2017, Art. no. gix019.

[50] M.Musci, D. DeMartini, N. Blago, T. Facchinetti, andM. Piastra, ‘‘Online
fall detection using recurrent neural networks,’’ 2018, arXiv:1804.04976.

[51] E. Torti, A. Fontanella, M. Musci, N. Blago, D. Pau, F. Leporati, and
M. Piastra, ‘‘Embedding recurrent neural networks in wearable systems for
real-time fall detection,’’ Microprocessors Microsyst., vol. 71, Nov. 2019,
Art. no. 102895.

[52] X. Yu, H. Qiu, and S. Xiong, ‘‘A novel hybrid deep neural network to
predict pre-impact fall for older people based onwearable inertial sensors,’’
Frontiers Bioeng. Biotechnol., vol. 8, p. 63, Feb. 2020.

[53] B. Aguiar, T. Rocha, J. Silva, and I. Sousa, ‘‘Accelerometer-based fall
detection for smartphones,’’ in Proc. IEEE Int. Symp. Med. Meas. Appl.
(MeMeA), Jun. 2014, pp. 1–6.

[54] P. Pierleoni, A. Belli, L. Palma, M. Pellegrini, L. Pernini, and S. Valenti,
‘‘A high reliability wearable device for elderly fall detection,’’ IEEE Sen-
sors J., vol. 15, no. 8, pp. 4544–4553, Aug. 2015.

[55] E. Torti, A. Fontanella, M. Musci, N. Blago, D. Pau, F. Leporati, and
M. Piastra, ‘‘Embedded real-time fall detection with deep learning on
wearable devices,’’ in Proc. 21st Euromicro Conf. Digit. Syst. Design
(DSD), Aug. 2018, pp. 405–412.

[56] L. Jiao, M. Liang, H. Chen, S. Yang, H. Liu, and X. Cao, ‘‘Deep fully con-
volutional network-based spatial distribution prediction for hyperspectral
image classification,’’ IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10,
pp. 5585–5599, Oct. 2017.

[57] N. Lu, Y. Wu, L. Feng, and J. Song, ‘‘Deep learning for fall detec-
tion: three-dimensional CNN combined with LSTM on video kinematic
data,’’ IEEE J. Biomed. Health Informat., vol. 23, no. 1, pp. 314–323,
Jan. 2019.

MD. MOHSIN KABIR received the Bachelor
of Science degree in CSE from the Bangladesh
University of Business and Technology (BUBT),
Bangladesh, in 2021. He is currently pursu-
ing the joint master’s degree in intelligent field
robotics systems (IFRoS) with the University of
Girona, Spain, and Eötvös Loránd University,
Hungary, funded by Erasmus Mundus Scholarship
(2022–2024). In addition to his studies, he holds
a position as a Lecturer with the Department of

Computer Science and Engineering, BUBT (study-leave), where he was a
Research Assistant and a Researcher with the Advanced Machine Learning
Laboratory. Also, he has had the privilege of collaborating with several
prominent research laboratories around the globe, including the Com-
puter Vision & Pattern Recognition Laboratory, University of Asia Pacific,
Bangladesh, and the Database System Laboratory, The University of Aizu,
Japan. With an extensive research background, he has authored over ten
articles in high-impact journals, such as IEEE ACCESS, Sensors, Computer
Systems Science and Engineering, Biology, and Mathematics. In addition,
he has contributed to the scientific community by publishing over ten con-
ference papers and actively participating in well-established conferences,
including IEEE HONET, ICCIT, ICIEV, icIVPR, DASA, BIM, and ICSCT.
Moreover, some of his research work has been published as a chapter in a few
esteemed books related to machine learning and AI. His research interests
include artificial intelligence, machine learning, deep learning, computer
vision, the IoT, and robotics.

64112 VOLUME 11, 2023



M. M. Kabir et al.: Secure Your Steps: A Class-Based Ensemble Framework for Real-Time Fall Detection

JUNGPIL SHIN (Senior Member, IEEE) received
the B.Sc. degree in computer science and statis-
tics and the M.Sc. degree in computer science
from Pusan National University, South Korea, in
1990 and 1994, respectively, and the Ph.D. degree
in computer science and communication engi-
neering from Kyushu University, Japan, in 1999,
under a scholarship from the JapaneseGovernment
(MEXT). He was an Associate Professor, a Senior
Associate Professor, and a Full Professor with the

School of Computer Science and Engineering, TheUniversity ofAizu, Japan,
in 1999, 2004, and 2019, respectively. He has coauthoredmore than 300 pub-
lished papers for widely cited journals and conferences. His research interests
include pattern recognition, image processing, computer vision, machine
learning, human–computer interaction, non-touch interfaces, human ges-
ture recognition, automatic control, parkinson’s disease diagnosis, ADHD
diagnosis, user authentication, machine intelligence, handwriting analysis,
recognition, and synthesis. He is a member of ACM, IEICE, IPSJ, KISS, and
KIPS. He served as the program chair and as a program committee member
for numerous international conferences. He serves as an Editor for IEEE
journals, Sensors (MDPI) and Electronics, and Tech Science Press. He serves
as a reviewer for several major IEEE and SCI journals.

M. F. MRIDHA (Senior Member, IEEE) received
the Ph.D. degree in AI/ML from Jahangirna-
gar University, in 2017. He is currently an
Associate Professor with the Department of Com-
puter Science, American International University-
Bangladesh (AIUB). Before that, he was an
Associate Professor and the Chairperson with the
Department of CSE, Bangladesh University of
Business and Technology. He was a Faculty Mem-
ber with the CSE Department, University of Asia

Pacific, and the Graduate Head, from 2012 to 2019. His research experience
within both academia and industry, results in over 120 journals and confer-
ence publications. His research work contributed to the reputed journals of
Scientific Reports,Nature,Knowledge-Based Systems, Artificial Intelligence
Review, IEEE ACCESS, Sensors, Cancers, and Applied Sciences. For more
than ten years, he has been with the master’s and undergraduate students as a
supervisor of their thesis work. His research interests include artificial intel-
ligence (AI), machine learning, deep learning, natural language processing
(NLP), and big data analysis. He has served as a program committee member
in several international conferences/workshops. He served as an Associate
Editor for several journals including PLOS One journal. He has served as
a Reviewer for reputed journals and IEEE conferences, such as HONET,
ICIEV, ICCIT, IJCCI, ICAEE, ICCAIE, ICSIPA, SCORED, ISIEA, APACE,
ICOS, ISCAIE, BEIAC, ISWTA, IC3e, ISWTA, CoAST, icIVPR, ICSCT,
3ICT, and DATA21.

VOLUME 11, 2023 64113


